产品展厅收藏该商铺

您好 登录 注册

当前位置:
武汉华顶电力设备有限公司>>高压试验设备>>冲击电压发生器>>HDCJ天水市雷击冲击电压发生器品牌

天水市雷击冲击电压发生器品牌

返回列表页
  • 天水市雷击冲击电压发生器品牌

  • 天水市雷击冲击电压发生器品牌

  • 天水市雷击冲击电压发生器品牌

  • 天水市雷击冲击电压发生器品牌

收藏
举报
参考价 面议
具体成交价以合同协议为准
  • 型号 HDCJ
  • 品牌
  • 厂商性质 生产商
  • 所在地 武汉市

在线询价 收藏产品 加入对比

更新时间:2019-12-03 11:56:41浏览次数:373

联系我们时请说明是制药网上看到的信息,谢谢!

联系方式:涂建查看联系方式

产品简介

天水市雷击冲击电压发生器品牌1.在所有武汉华顶电力设备有限公司所生产的冲击电压发生器中,冲击电压发生器参数均需要技术人员提供详细参数及报价方案,以下HDCJ雷击冲击电压发生器适用于110kV(HDCJ-900kV/33.75kJ)及以下电力产品,以下配置参数供您参

详细介绍

 HDCJ雷击冲击电压发生器满足现行标准、国家标准及有关行业标准。本套装置所输出电压波形及效率:(负荷电容小于5500pF时包含分压器电容)下,可产生标准雷电冲击电压波形数量:3个。
   A.标准雷电冲击全波电压波形
   波头时间:1.2±30%μs,波尾时间:50±20%μs,过冲:小于5%,效率:不低于90%。±1.2/50μs标准雷电冲击电压全波,效率大于90%。
   B.标准雷电冲击截波电压波形。
   波头时间:1.2±30%μs,过冲:小于5%,截断时间:2~6μs,电子时延控制,效率:不低于90%,采用截断装置可产生截断时间2~6μs的雷电截波,截波分散性小于100ns。
   C.变压器电抗器雷电冲击电压试验的示伤电流全波波形。

二.执行标准:
    GB311.1-1997高压输变电设备的绝缘配合
    GB/T16927.1-1997高电压试验技术,一般试验要求
    GB/T16927.2-1997高电压试验技术,测量系统
    GB/T16896.1-1997高电压冲击试验用数字记录仪
    ZB F24 001-90冲击电压测量实施细则
    GB191 包装运标志
    GB4208 外壳防护等级
    GB813-89 冲击试验用示波器及峰值表
三.使用条件:
    本冲击电压发生器试验系统装置主要适用于110kV及以下电力产品的雷电冲击电压全波,也可用于其它产品的冲击试验。
    1.海拔高度不超过1500m
    2.环境温度:-15~+50℃
    3.空气相对湿度:≤90%
    4.安装使用地点:户内使用,可移动
    5.必须设有一个屏蔽控制室及可靠接地点,接地电阻<1Ω!
    6.冲击发生器(型号:HDCJ-900/33.7)
       A.冲击发生器主要技术参数
       B.标称雷电波冲击电压:HDCJ-900kV
       C.标称容量(能量):33.75kJ
       D.级电容:0.6μF,100kV(100kV-0.6μF)干式全绝缘封装
       E.级电压:±150kV 
       F.级数/级容量:5 / 6.75kJ
       G.输出波形:±1.2/50μs标准雷电冲击电压全波,效率大于90%;
       H.同步范围:大于20%
       I.使用持续时间:
         小于80%额定工作电压时可连续工作
          大于80%额定工作电压时可间断工作
      J.幅值调节误压差小于1%,输出电不大于10%设备标称电压。
      K.同步误动率:小于1%
      L.底座:2m × 1.5m (脚轮移动)。
      高度:约3.5米。
      重量:约860kg。
7.冲击电压发生器的技术说明
      A.发生器的结构
      B.采用瑞士HAEFELY公司SGS系列的主回路设计,从而实现了整体超小型。
      C.采用每分钟一转的低速齿轮齿条传动机构调整各级球隙,不仅无噪声、磨损小,而且定位快速、准确。
      D.采用弹簧压接、方便拔插的调波电阻固定机构,保证了接触的可靠性,使输出波形光滑无毛刺。
      E.配合PLC电气控制系统的脉冲放大器可使同步球隙具有20%以上的触发范围,保证触发的可靠性,控制方便可靠。
      F.同步球隙的触发无极性效应,无须双边触发。
8.主电容器
    A.主电容器采用高密度固体电容器,每台电容量为0.6±0.05μF,直流工作电压为±100kV,电容器固有电感小于0.2μH,重量轻,体积小,
    B.电容器在正常工作状态和工作环境下凹凸变形小于1mm。
    C.电容器为固体绝缘介质和外壳干式全绝缘封装,不存在漏油、变形等问题。
9.调波元件
    A.波头、波尾电阻具有足够的热容量,可保证发生器长时间连续运行。
    B.充电电阻具有足够的热容量,可保证发生器长时间连续运行。
    C.波头、波尾电阻采用板形结构,使用康铜丝无感绕制而成,外部采用绝缘树脂真空浇铸,接头为弹簧压接式,易于安装。
    D.波头、波尾电阻的连接头采用3mm不锈钢线切割制造。
    E.共有1组半波头电阻、1组半波尾电阻用于雷电冲击,另有1组充电电阻和保护电阻。
10.控制、保护系统
   采用PLC电气控制系统为冲击电压发生器主体部分提供各种控制,*冲击试验的各种控制 
功能。PLC控制系统采用进口PLC器件,与设备主体的连接采用两芯光缆。
   A.PLC全自动控制系统实现手动控制。软件包可以与测量和波形分析用的峰值电压表、示波器等配合使用,实现冲击电压试验系统计算机测控一体化。
  B.控制系统具备以下控制功能:
   1.控制功能具有手动控制,各层次功能相对独立,确保系统的可靠性。
   2.采用可控硅调压方式,具有充电电压反馈测量系统。
   3.点火球隙可手动,并在控制面板上显示。
   4.采用函数控制恒流充电方式,充电电压的稳定度可达到0.5%。
   5.液晶面板可指示冲击发生器的充电电压,精度为1%。
   6. 具有充电异常保护功能,手动发出触发点火脉冲
   7.设备主体及充电部分接地和接地解除控制。
   8.手动控制充电电压的充电过程
   9.手动响警铃报警
   10.具有过电流和过电压自动保护
  C.同步球隙*级采用三电极球隙触发,触发范围大于20%。
  D.安全接地系统
  E.采用电磁铁自动接地机构通过一个接地电阻将发生器的*级电容接地。
  F.接地操作与充电控制具有连锁保护,确保操作安全正常。
11.主要配置的设备
  A.整流充电电源(与冲击本体一体化)
     型    号:HDLGR-100/100
     额定电压:Un = 100kV DC (正或负极性)
     额定电流:In = 100mA (额定电压下)
     电压控制:可控硅模块调压,调压范围0~* Un
     极性转换:手动变换高压硅堆的方向
     输入电压:220V 单相电压
     电源频率:50/60 Hz 
     电源消耗:约5kVA
  B.弱阻尼电容分压器
     型    号:HDCR-900kV/500pF
     额定电压:900kV
     额定电容:500pF
     电容节数:2节,每节电容:1000pF(375-1200脉冲电容器)
     方波响应:部分响应时间小于100ns,过冲小于10%
     分压比:约500,分压比不确定度:小于1%
  C.测量设备
     型    号:HDIMS-1000数字化冲击测量系统
      幅值测量:HZ(IPM)23型冲击峰值电压表
     输入范围:150V ~ 1600V(冲击电压)
     测量不确定度:小于1%
     波形测量:TDS1012C-SC数字示波器,采样率1.0GS/s,带宽大于100MHz,分辨率8bit,记录长度2.5k字节(可满足冲击试验要求),2通道
     波形分析:工业控制计算机工作站(采用15寸液晶显示屏)
     冲击测量软件包:冲击波形参数计算及显示,波形比较功能,波形的放大、缩小及平移,波形的存储及调用,波形的成图及报告编写
附    件:高性能100倍衰减器1支
隔离滤波屏蔽设
更多产品咨询请访问武汉华顶电力设备有限公司 

波局部放电检测技术凭借其抗*力及定位能力的优势,在众多的检测法中占有非常重要的地位。超声波法用于变压器局部放电检测早始于上世纪40年代,但因为灵敏度低,易于受到外界干扰等原因一直没有得到广泛的应用。上世纪80年代以来随着微电子技术和信号处理技术的飞速发展,由于压电换能元件效率的提高和低噪声的集成元件放大器的应用,超声波法的灵敏度和抗*力得到了很大提高,其在实际中的应用才重新得到重视。挪威电科院的L.E.Lundgaard.从上世纪70年代末开始研究局部放电的超声检测法,并于1992年发表了介绍超声检测局部放电的基本理论及其在变压器、电容器、电缆、户外绝缘子、空气绝缘开关中的应用情况的文章。随后美国西屋公司的Ron Harrold对大电容的局部放电超声检测进行了研究,并初步探索了超声波检测的幅值与脉冲电流法测量视在放电量之间的关系。2000年,澳大利亚的西门子研究机构使用超声波和射频电磁波联合检测技术监测变压器中的局部放电活动。2002年,法国ALSTOM输配电局的研究人员对变压器中的典型局部放电超声波信号的传播与衰减进行了比较研究。2005年德国Ekard Grossman和Kurt Feser发表了基于优化的声发射技术的油纸绝缘设备的局部放电在线测试方法,通过使用二维傅里叶变换对信号进行处理,可达10pC的检测灵敏度。同一年,南韩电力研究所研究员发表了关于电力变压器局放超声波信号及噪声的分析方法的文章。

国内清华大学、华北电力大学、西安交通大学、武汉高压所等科研机构自上世纪90年代开始逐渐开展超声波局部放电检测的研究。西安交通大学提出了相控定位方法,先通过时延算出放电的距离,再根据相控阵扫描的角度确定放电的空间位置。武高所开发了JFD系列超声定位系统,其对一般变压器放电定位误差可小于10cm。

经过几十年的发展,目前超声波局部放电检测已经成为局部放电检测的主要方法之一,特别是在带电检测定位方面。该天水市雷击冲击电压发生器品牌天水市雷击冲击电压发生器品牌方法具有可以避免电磁干扰的影响、可以方便地定位以及应用范围广泛等优点。

传统的超声波局部放电检测法是利用固定在电力设备外壁上的超声波传感器接收设备内部局部放电产生的超声波脉冲,由此来检测局部放电的大小和位置。由于此方法受电气干扰的影响比较小以及它在局部放电定位中的广泛应用,人们对超声波法的研究逐渐深入。

目前,超声波检测局部放电的研究工作主要集中在定位方面,原因是与电测法相比,超声波

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~

对比框

产品对比 二维码 意见反馈

扫一扫访问手机商铺
在线留言