通常所说灰分就是指总灰分,在总灰分中有包括:水溶性灰分;水不溶性灰分;酸溶性灰分;酸不溶性灰分。 一. 准备坩埚(灰化容器) 目前常有的坩埚:石英坩埚;素瓷坩埚;白金坩埚;不锈钢坩埚 素瓷坩埚在实验室常用,它的物理性质和化学性质和石英相同,耐高温,内壁光滑可以用热酸洗涤,价格低,对碱性敏感。下面我们谈到的坩埚都是素瓷坩埚。 坩埚→ (1:4)盐酸煮沸洗净→降至200℃→放入干燥室内冷却到室温→称重(空坩埚) 二.样品的处理 对于各种样品应取多少克应根据样品种类而定,另外对于一些样品不能直接烘干的首*行预处理才能烘干。 1)湿的液体样品(牛奶,果汁)先在水浴上蒸干湿样。主要是先去水,不能用马福炉直接烘,否则样品沸腾会飞溅,使样品损失,影响结果。 2)含水分多的样品(果蔬)应在烘箱内干燥。 3)富含脂肪的样品(先提取脂肪,即放到小火上烧直到烧完为止,然后再炭化。) 4)富含糖,蛋白质,淀粉的样品在灰化前加几滴纯植物油(防止发泡) 取样量的多少应根据样品的种类和性质来决定,食品的灰分与其他成分相比含量较少。 三选择灰化的温度,灰化的温度因样品不同而有差异,大体是果蔬制品、肉制品、糖制品类不大 于525℃;谷物、乳制品(除奶油外)、鱼、海产品、酒类不大于525℃ 根据上面这些我们可选择测灰分的温度,灰化温度选择过高,造成无机物的损失(NaCL、 KCL)也就是说增加灰化温度,就增加了KCL的挥发损失,CaCO3则变成CaO,磷酸盐熔融,然 后包住碳粒,使碳粒无法氧化,所以我们选择温度不能过高。根据所测的样品来选择灰化温度。 四 灰化时间 对于灰化时间一般无规定,针对试样和灰化的颜色,一般灰化到无色(灰白色),灰化的时间过长,损失大,一般灰化需要2-5小时,有些样品即使灰化*,颜色也达不到灰白色,如Fe含量高的样品,残灰蓝褐色,Mn、Cu含量高的食品残灰蓝绿色,所以根据样品不同来看颜色。 五 加速灰化的方法 对于一些难灰化的样品(如动物性食品,蛋白质较高的)为了缩短灰化周期,采用加速灰化过程,一般可采用三种方法来加速灰化。 〈1〉改变操作方法 样品初步灼烧后取出坩埚→冷却 →在灰中加少量热水→搅拌使水溶性盐溶解,使包住的碳粒游离出来蒸去水分→干燥→灼烧 〈2〉 加HNO3(1:1)或30%H2O2 使未氧化的碳粒充分氧化并且使它们生成NO2和水,这类物质灼烧时*消失,又不至于增加残留物灰分重量。 〈3〉 加惰性物质 如Mg ,CaCO3等,这些都不溶解,使碳粒不被覆盖,此法同时作空白实验。 六 测定步骤 在坩埚中称取定量样品→在电炉中炭化至无烟 →在500℃马福炉中灼烧到灰白色 →冷却到200℃ →入干燥皿冷却到室温→称重灼烧1小时 →冷却到恒重 灰分%=灰分重量/样品重量 *100 | |||||||
![]() | 总酸度的测定(滴定法) | ||||||
一、原理 食品中的有机酸(弱酸)用标准碱液滴定时,被中和生成盐类。用酚酞作指示剂,当滴定到终点(pH=8.2,指示剂显红色)时,根据消耗的标准碱液体积,计算出样品总酸的含量。其反应式如下:RCOOH + NaOH→ RCOONa +H2O 二、样品的处理与制备 1.固体样品 将样品适度粉碎过筛,混合均匀,取适量的样品 ,加入少量无二氧化碳的蒸馏水,将样品溶解到250ml容量瓶中,在75-80℃水浴上加热0.5小时(若是果脯类,则在沸水中加热1小时),冷却、定容 ,用干燥滤纸过滤,弃去初液,收集滤液备用。 2.含二氧化碳的饮料、酒类 将样品于45℃水浴上加热30min, 除去二氧化碳,冷却后备用。 3.调味品及不含二氧化碳饮料、酒类 将样品混合均匀后直接取样 ,必要时也可加适量水稀释,若混浊则需过滤。 4.咖啡样品 将样品粉碎经40目筛 ,取10g样于三角瓶,加75ml 80%乙醇,加塞放置16小时,并不时的摇动,过滤。 5.固体饮料 称取5g样品于研钵中,加入少量无CO2蒸馏水,研磨成糊状,用无CO2蒸馏水移入250ml容量瓶中定容,摇匀后过滤。 三.样品滴定 准确吸取制备的滤液50ml,加入酚酞指示剂2-3滴,用0.1mol/L标准碱液滴定至微红色30秒不褪色,记录用量,同时做空白实验。以下式计算样品含酸量。 总酸度(%) =[C×(V1-V2)×K] / m ×V3 / V4 ×100 式中: C---标准氢氧化钠溶液的浓度mol/L V1---滴定所消耗标准碱液的体积ml V2 ---空白所消耗标准碱液的体积ml V3 ---样品稀释液总体积ml V4---滴定时吸取的样液的体积ml M---样品质量或体积(g或ml) K---换算为适当酸的系数,即1mol氢氧化钠相当于主要酸的克数 因为食品中含有多种有机酸,总酸度测定结果通常以样品含量zui多的那种酸表示。例如一般分析葡萄及其制品时,用酒石酸表示,其K=0.075;测柑橘类果实及其制品时,用柠檬酸表示,其K=0.064;分析苹果及其制品时,用苹果酸表示,其K =0.067;分析乳品、肉类、水产品及其制品时,用乳酸表示,其K=0.090;分析酒类、调味品,用乙酸表示,K=0.060。 四、注意事项:1.样品浸泡,稀释用的蒸馏水中不含CO2,因为它溶于水生成酸性的H2CO3,影响滴定终点时酚酞的颜色变化,一般的做法是分析前将蒸馏水煮沸并迅速冷却,以除去水中的CO2 。样品中若含有CO2 也有影响,所以对含有CO2的饮料样品,在测定前须除掉CO2。2.样品在稀释用水时应根据样品中酸的含量来定,为了使误差在允许的范围内,一般要求滴定时消耗0.1mol/LNaOH不小于5ml,应在10~15ml左右。3.由于食品中含有的酸为弱酸,在用强碱滴定时,其滴定终点偏碱性,一般pH在8.2左右,所以用酚酞做终点指示剂。4.若样品有色(如果汁类)可脱色或用电位滴定法也可加大稀释比,按100ml样液加0.3ml酚酞测定。 各类食品的酸度以主要酸表示,但有些食品(如牛奶、面包等)也可用中和100g(ml)样品所需0.1mol/L(乳品)或1mol/L(面包)NaOH溶液的ml数表示,符号0T。新鲜牛奶的酸度为16-180T, 面包酸度为3-9 0T。 | |||||||
![]() | 水分测定方法 | ||||||
水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下: 1、热干燥法: ① 常压干燥法(此法用的广泛); ② 真空干燥法(有的样品加热分解时用); ③ 红外线干燥法; ④ 真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴ 特点:此法应用zui广泛,操作以及设备都简单,而且有相当高的度。 ⑵ 原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不*是水。 2、干燥法必须符合下列条件(对食品而言): ⑴ 水分是*挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵ 水分挥发要* 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶ 食品中其它成分由于受热而引起的化学变化可以忽略不计。 例:还原糖+氨基化合物 △→ 变色(美拉德反应)+H2O↑ 还有 H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2 发酵糖(NaHCO3+KHC4H4O6) △ →H2O+CO2+ NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的*点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴ 取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵ 干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘1.5小时→于干燥器冷却→称重→再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) * 油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。 * 对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。 * 对于液体与半固体样品,要在称量皿中加入海砂,使样品疏松,扩大蒸发的接触面,并且用一个玻璃棒作为容器。先放到沸水浴中烘,烘的差不多,再放到烘箱烘,否则不加海砂样品容易使表面形成一层膜,造成水分不易出来,另外易沸腾的液体飞沫使重量损失。 计算:水分= G2 - G1 / W 固形物(%)=100 - 水分% G1 —— 恒重后称量皿重量(g) G2 —— 恒重后称量皿和样品重量(g) W —— 样品重量(g) 固形物 —— 指食品内将水分排除以后的全部残留物。其组分有蛋白质、脂肪、粗纤维、无氮抽出物和灰分等。 5、烘箱干燥法产生误差的原因 ⑴ 样品中含有非水分易挥发性物质(酒精、醋酸、香精油、磷脂等); ⑵ 样品中的某些成分和水分的结合,使测的结果偏低(如蔗糖水解为二分子单糖),主要是限制水分挥发; ⑶ 食品中的脂肪与空气中的氧发生氧化,使样品重量增重; ⑷ 在高温条件下物质的分解(果糖对热敏感); 果糖 C6H12O6 大于70℃ △→C6H6O3 + 3H2O ⑸ 被测样品表面产生硬壳,妨碍水分的扩散;尤其是对于富含糖分和淀粉的样品; ⑹ 烘干到结束样品重新吸水。 二、真空干燥法 1、原理:利用较低温度,在减压下进行干燥以排除水分,样品中被减少的量为样品的水分含量。 本法适用于在100℃以上加热容易变质及含有不易除去结合水的食品。其测定结果比较接近真正水分。 2、操作方法 准确称2.00~5.00g样品→于烘至恒重的称量皿→至真空烘箱→70℃、真空度93.3~98.6KPa(700~740mmHg)→烘5小时→于干燥皿冷却→称至恒重 计算:水分= G / W G —— 样品中干燥后的失重(g) W —— 样品重量(g) 真空干燥法测水分,一般用于100℃以上容易变质、破坏或不易除去结合水的样品,如糖浆、味精、砂糖、糖果、蜂蜜、果酱和脱水蔬菜等样品都可采用真空干燥法测定水分。 三、蒸馏法测定水分(迪安—斯达克) 蒸馏发出现在二十世纪初,当时它采用沸腾的有机液体,将样品中水分分离出来,此法直到如今仍在适用。 1、原理:把不溶于水的有机溶剂和样品放入蒸馏式水分测定装置中加热,试样中的水分与溶剂蒸汽一起蒸发,把这样的蒸汽在冷凝管中冷凝,由水分的容量而得到样品的水分含量。 2、步骤 准确称2.00~5.00g样品→于250ml水分测定蒸馏瓶中→加入约50~75ml有机溶剂→接蒸馏装置→徐徐加热蒸馏→至水分大部分蒸出后→在加快蒸馏速度→至刻度管水量不在增加→读数 计算: 水分=V/W V —— 刻度管中水层的容量ml W —— 样品的重量(g) 3、常用的有机溶剂及选择依据 常用的有机溶剂有比水清的,也有比水重的。 苯 甲苯 二甲苯 CCl4 密度 0.88 0.86 0.86 1.59 沸点 80℃ 80℃ 140℃ 76.8℃ 选择依据:对热不稳定的食品,一般不采用二甲苯,因为它的沸点高,常选用低沸点的有机溶剂,如苯。对于一些含有糖分,可分解释放出水分的样品,如脱水洋葱和脱水大蒜可采用苯,要根据样品的性质来选择有机溶剂。 4、蒸馏法的优缺点 优点: ⑴ 热交换充分 ⑵ 受热后发生化学反应比重量法少 ⑶ 设备简单,管理方便 缺点: ⑴ 水与有机溶剂易发生乳化现象 ⑵ 样品中水分可能*没有挥发出来 ⑶ 水分有时附在冷凝管壁上,造成读数误差 对分层不理想,造成读数误差,可加少量戊醇或异丁醇防止出现乳浊液。 这种方法用于测定样品中除水分外,还有大量挥发性物质,例如,醚类、芳香油、挥发酸、CO2等。目前AOAC规定蒸馏法用于饲料、啤酒花、调味品的水分测定,特别是香料,蒸馏法是*的、*的水分检验分析方法。 四、卡尔—费休法 *,卡尔费休法是测定各种物质中微量水分的一种方法,这种方法自从1935年由卡尔费休提出后,一直采用I2、SO2、吡啶、无水CH3OH(含水量在0.05%以下)配制而成,并且标准化组织把这个方法定为标准测微量水分,我们国家也把这个方法定为国家标准测微量水分。 1、原理:在水存在时,即样品中的水与卡尔费休试剂中的SO2与I2产生氧化还原反应。 I2 + SO2 + 2H2O → 2HI + H2SO4 但这个反应是个可逆反应,当硫酸浓度达到0.05%以上时,即能发生逆反应。如果我们让反应按照一个正方向进行,需要加入适当的碱性物质以中和反应过程中生成的酸。经实验证明,在体系中加入吡啶,这样就可使反应向右进行。 3 C5H5N+H2O+I2+SO2 → 2氢碘酸吡啶+硫酸酐吡啶 生成硫酸酐吡啶不稳定,能与水发生反应,消耗一部分水而干扰测定,为了使它稳定,我们可加无水甲醇。 硫酸酐吡啶 + CH3OH(无水)→ 甲基硫酸吡啶 我们把这上面三步反应写成总反应式为: I2+SO2+H2O+3吡啶+CH3OH 2氢碘酸吡啶+甲基硫酸吡啶 从反应式可以看出1mol水需要1mol碘,1mol二氧化硫和3mol吡啶及1mol甲醇而产生2mol氢碘酸吡啶、1mol甲基硫酸吡啶。这是理论上的数据,但实际上,SO2、吡啶、CH3OH的用量都是过量的,反应完毕后多余的游离碘呈现红棕色,即可确定为到达终点。 I2︰SO2︰C5H5N = 1︰3︰10 2、卡尔费休试剂的配制与标定 若以甲醇作溶剂,则试剂中I2、SO2、C5H5N(含水量在0.05%以下)三者的克分子数比例为 I2︰SO2︰C5H5N = 1︰3︰10 这种试剂有效浓度取决于碘的浓度。新配制的试剂其有效浓度不断降低,其原因是由于试剂中各组分本身也含有一些水分,但试剂浓度降低的主要原因是由一些副反应引起的,较高消耗了一部分碘。 这也说明了配制这种试剂要单独配,分甲乙两种试剂并且分别贮存,临用时再混合,而且要标定。 甲液 I2的CH3OH溶液 乙液 SO2的CH3OH吡啶溶液 配制: 称85gI2→于干燥的有塞棕色烧瓶中→加670ml无水CH3OH→塞上瓶塞→振摇使I2全部溶解→加270ml吡啶→混匀→于冰水浴冷却→通干燥的SO2气体60g→塞上瓶塞→于暗处24小时后标定使用 标定: 先加50ml无水甲醇→于反应器中→接通电源→启动电磁搅拌器→用KF试剂滴入甲醇中使甲醇中尚残留的痕量水分与试剂达到终点(即指针到达一定刻度,不记录KF试剂用量)→保持一分钟→用10μl注射器从反应器加料口注入10μl蒸馏水(相当于0.01g水)→电流表指针接近零点→用KF试剂滴定到原定终点→记录 F =G*100/V F —— KF试剂的水当量(mg/ml) V —— KF滴定消耗试剂的体积(ml) G —— 水的重量(g) 3、步骤 对于固体样,如糖果必须预先粉碎,称0.30~0.50g样于称样瓶中, 取50 ml甲醇 → 于反应器中,所加甲醇要能淹没电极,用KF试剂滴定50 ml甲醇中痕量水 → 滴至指针与标定时相当并且保持1min不变时 → 打开加料口 → 将称好的试样立即加入 → 塞上皮塞 → 搅拌 → 用KF试剂滴至终点保持1min不变 → 记录 计算:水分=FV/W F —— KF试剂的水当量(mg/ml); V —— 滴定所消耗的卡尔费休试剂(ml); W —— 样品重量(g) 注:① 此法适用于食品中糖果、巧克力、油脂、乳糖和脱水果蔬类等样品; ② 样品中有强还原性物料,包括维生素C的样品不能测定; ③ 卡尔费休法不仅可测得样品中的自由水,而且可测出结合水,即此法测得结果更客观地反映出样品中总水分含量。 ④ 固体样品细度以40目为宜,用粉碎机而不用研磨,防止水分损失。 五、水分活度值的测定 食品中水分活度的检验方法很多,如蒸汽压力法、电湿度计法、附感敏器的湿动仪法、溶剂萃取法、扩散法、水分活度测定仪法和近似计算法等。一般常用的是水分活度测定仪法(AW测定仪法)、溶剂萃取法和扩散法。水分活度测定仪法操作简便,能在较短时间得到结果。 1、AW测定仪法 ⑴ 原理:在一定温度下主要利用AW测定仪中的传感器根据食品中水的蒸汽压力的变化,从仪器的表头上读出指针所示的水分活度。在样品测定前需用氯化钡和溶液校正AW测定仪的AW为9.000。 ⑵ 步骤 ① 仪器校正 两张滤纸→浸于氯化钡饱和液中→用小夹子轻轻地把它放在仪器的样品盒内→然后将传感器的表头放在样品盒上,轻轻地拧紧→于20℃恒温烘箱→加热恒温3小时后→将校正螺丝校正AW为9.00 ② 样品测定 取样→于15~25℃恒温后→(果蔬样品迅速捣碎取汤汁与固形物按比例取样→肉和鱼等固体试样需适当切细)→于容器样品盒内→将传感器的表头置于样品盒上轻轻地拧紧→于20℃恒温烘箱中→加热2小时后→不断观察表头仪器指针的变化情况→等指针恒定不变时→所指的数值即为此温度下试样的AW值 2、溶剂萃取法 ⑴ 原理:食品中的水可用不混溶的溶剂苯来萃取。苯在一定温度下其萃取的水量随样品中水分活度而变化,即萃取的水量与水相中的水分活度成比例,其结果与同温度下测定的苯中饱和溶解水值与水相中的水的比值即为该样品的水分活度。 ⑵ 步骤 称样1.00g → 于250 ml磨口三角烧瓶 → 加100ml苯 → 塞上瓶塞 → 振摇1小时 → 静置10分钟 → 吸50ml → 于卡尔费休水分测定器中 → 加无水甲醇70ml → 混合 → 用KF试剂滴至微红色→ 置电 流指针再不变即为终点 → 记录 求苯中饱和溶解水值: 取蒸馏水10ml代替样品 → 加苯100 ml → 振摇2分钟 → 静置5分钟 → 同上样品测定 ⑶ 计算 AW =[H2O]n×10/[H2O]0 AW —— 样品中水分活度值 [H2O]n —— 从食品中萃取的水量,即从KF试剂滴定度乘滴定样品消耗KF试剂毫升数 [H2O]0 —— 测定纯水中萃取水量 3、扩散法 样品在康威氏微量扩散皿密封和恒温下,分别在较高和较低的标准饱和溶液中扩散平衡后,根据样品重量的增加和减少的量,求出样品中AW值。 六、其它测定水分方法 1、化学干燥法 化学干燥法就是将某种对于水蒸汽具有强烈吸附作用的化学药品与含水样品同装入一个干燥器(玻璃或真空干燥器),通过等温扩散及吸附作用而使样品达到干燥恒重,然后根据干燥前后样品的失重即可计算出其水分含量,此法在室温下干燥,需要较长时间,几天、几十天甚至几个月。 干燥剂有五氧化二磷、氧化钡、高氯酸镁、氢氧化锌、硅胶、氧化氯等。 2、微波法 微波是指频率范围为103~3×105MHZ的电磁波。当微波通过含水样品时,因水分引起的能量损耗远远大于干物质所引起的损耗,所以测量微波能量的损耗就可以求出样品含水量。 3、红外吸收光谱法 红外线属于电磁波,波长0.75~1000μm的光。红外波段可分三部分:① 近红外区 0.75~2.5μm;② 中红外区 2.5~25μm;③ 远红外区 25~1000μm。 根据水分对某一波长的红外光的吸收程度与其在样品中含量存在一定的关系的事实即建立了红外光谱测定水分方法。 (1).水分测定常用什么方法?它对被检验物有何要求?误差可能来自哪些方面? (2).蒸馏法测定水分主要有哪些优点?常有试剂有哪些,使用依据是什么? (3).卡尔费休试剂?此方法如何完成水分定量测定的? | |||||||
![]() | 维生素C的测定 | ||||||
维生素C是一种已糖醛基酸,有抗坏血病的作用,所以被人们称做抗坏血酸,主要为还原型及脱氢型两种,广泛存在于植物组织中,新鲜的水果、蔬菜,特别是枣、辣椒、苦瓜、柿子叶、猕猴桃、柑橘等食品中含量较多。它是氧化还原酶之一,本身易被氧化,但在有些条件下又是一种抗氧化剂。 维生素C(还原型)纯品为白色无臭结晶,熔点190~192℃,溶于水或乙醇中,不溶于油剂。在水溶液中易被氧化,在碱性条件下易分解,在弱酸条件中较稳定,维生素C开始氧化为脱氢型抗坏血酸(有生理作用)。如果进一步水解则生成2,3-二酮古乐糖酸,失去生理作用。 根据它具有的还原性质可以测定维生素C的含量。常用的测定方法有 (1)2,6-二氯靛酚法 (还原型VC) (2)2,4-二硝基苯肼法 (总VC) (3)碘酸法 (4)碘量法 (5)荧光分光光度法 一、2,6-二氯靛酚滴定法 1、原理: 还原型抗坏血酸还原染料2,6-二氯靛酚,该染料在酸性中呈红色,被还原后红色消失。还原型 抗坏血酸还原2,6-二氯靛酚后,本身被氧化成脱氢抗坏血酸。在没有杂质干扰时,一定量的样 品提取液还原标准2,6-二氯靛酚的量与样品中所含维生素C的量成正比。 2、试剂 ⑴ 1%草酸溶液:称取10g草酸,加水至1000ml; ⑵ 2%草酸溶液:称20g草酸,加水至1000ml; ⑶ 维生素C标准液:准确称20mgVC溶于1%草酸中,并稀释至100ml,吸5ml于50ml容量瓶中,加入1%草酸至刻度,此溶液每毫升含有0.02mgVC; ⑷ 0.02%2,6-二氯靛酚溶液:称取2,6-二氯靛酚50mg,溶于200ml含有52mg碳酸氢钠的热水中,冷却后,稀释至250ml,过滤于棕色瓶中,贮存于冰箱内,应用过程中每星期标定一次。 标定一:吸标液(VC)5ml于三角瓶→加6%KI溶液0.5ml→加1%淀粉3滴→用0.001N KIO3标液滴定到淡兰色。 计算: 抗坏血酸浓度(mg/ml)= (V1 × 0.088)/ V2 V1 - 滴定时消耗0.001N KIO3标液的体积(ml) V2 -维生素C重量(g) 0.088 -1ml0.001N KIO3标液≈维生素C的量(mg/ml) 标定二:吸5ml已知浓度V C标液 → 加5ml1%草酸 → 用染料2,6-二氯靛酚滴定至溶液呈粉红色,在15秒不褪色为终点 计算:每毫升2,6-二氯靛酚相当于维生素C的毫克数等于滴定度(T) T= (C × V1)/ V2 C - 维生素C的浓度(mg/ml) V1 -维生素C的体积(ml) V2 -消耗2,6-二氯靛酚的体积(ml) ⑸ 0.001N KIO3标液:吸0.1N KIO3溶液5ml→于500ml容量瓶内→加水至刻度,每毫升相当于VC0.008mg; ⑹ 0.5%淀粉溶液; ⑺ 6%KI溶液; 3、操作方法 ⑴ 提取:称样50g→加2%草酸100ml→到入捣碎机中→处理→过滤→颜色若深可加白陶土 ⑵ 滴定:吸5ml样液→于三角瓶→用染料滴定至粉红色→15秒内不褪色 计算: VC(mg/100g)=(V × T)/ W × 100 V -消耗染料体积(ml) T -1ml染料所能氧化维生素C的毫克数 W- 滴定时所有滤液中含有样品的克数 4、注意事项 ⑴ 所有试剂的配制都用重蒸馏水; ⑵ 滴定时,可同时吸二个样品。一个滴定,另一个作为观察颜色变化的参考; ⑶ 样品进入实验室后,应浸泡在已知量的2%草酸液中,以防氧化,损失维生素C; ⑷ 贮存过久的罐头食品,可能含有大量的低铁离子(Fe2+),要用8%的醋酸代替2%草酸。这时如用草酸,低铁离子可以还原2,6-二氯靛酚,使测定数字增高,使用醋酸可以避免这种情况的发生; ⑸ 整个操作过程中要迅速,避免还原型抗坏血酸被氧化; ⑹ 在处理各种样品时,如遇有泡沫产生,可加入数滴辛醇消除; ⑺ 测定样液时,需做空白对照,样液滴定体积扣除空白体积。 二、2,4-二硝基苯肼法 可测总抗坏血酸,总抗坏血酸包括还原型、脱氢型和二酮古乐糖酸型。此法是将样品的还原型抗坏血酸氧化为脱氢型抗坏血酸,然后与2,4-二硝基苯肼作用,生成红色的脎。脎的量与总抗坏血酸含量成正比,将红色脎溶于硫酸后进行比色,由标准曲线计算样品中总VC。 1、原理: 用酸处理过的活性碳把还原型的抗坏血酸氧化为脱氢型抗坏血酸,在继续氧化为二酮古乐糖酸。 二酮古乐糖酸与2,4-二硝基苯肼偶联生成红色的脎,其成色的强度与二酮古乐糖酸浓度呈正 比,可以比色定量。 2、步骤 ⑴ 样品处理与分析 称一定样 → 加等量2%草酸 → 于高速捣碎机捣碎 → 取匀浆20g → 用1%草酸定容100ml → 过滤 → 取滤液10ml → 加1%草酸10ml → 加少量活性炭 → 摇1分钟 → 静置过滤 → 各取滤液2ml于样品管和样品空白管 → 各管加入1滴硫脲溶液 → 于样品管中加入2,4-二硝基苯肼0.5ml → 分别于两个管加盖 → 于37℃保温箱3小时 → 取出后样品管放入冰水中 → 样品空白管取出后冷至室温 → 在样品空白管加入2,4-二硝基苯肼 → 0.5ml → 样品管和空白管都于冰浴中 → 滴加85%H2SO42ml于各管中 → 边滴边摇 → 防止温度升高炭化后呈黑色 → 冰浴中30分钟后取出 → 室温下放置30分钟后,在540nm测消光值,从标准曲线上查出相应的含量 ⑵ 标准曲线的绘制 取5个50ml容量瓶编号 1 2 3 4 5 加VC标液0.2mg/ml 10 20 30 40 50ml 取5个比色管取相应 2 2 2 2 2 加硫脲溶液(滴) 1 1 1 1 1 2,4-二硝基苯肼(ml)0.5 0.5 0.5 0.5 0.5 于37℃保温箱3~4小时,取出于冰浴中,然后滴加85%硫酸2.5ml→取出放30分钟→在540nm下测各消光值绘标准曲线,同时做空白。 计算:每百克食品中抗坏血酸的毫克数=C/W *100 |
免责声明